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The vertical displacements Z(t) of fluid elements passing through a source z = 0 a t  
t = 0 in a horizontal mean flow with stably stratified statistically stationary 
turbulence (with buoyancy frequency N and velocity time-scale T), under the action 
of random pressure gradients and damping by internal wave motions, are investigated 
by a model Langevin-like equation, and by a general Lagrangian analysis of the 
displacements, of the density flux and of the energy of fluid elements. Solutions for 
the mean-square displacement Z”( t ) ,  the mean-square velocity 2, and the autoeor- 
relation of the velocity are calculated in terms of the spectrum @(s) of the pressure 
gradient. We use model equations for the momentum of fluid elements and for the 
exchange of density fluctuations between fluid elements, taking the elements’ 
diffusion timescale to be y-l times the buoyancy timescale W1, where y is a 
measurable parameter. 

I n  the case of moderate-to-strong stable stratification (i.e. NT 2 l ) ,  we find the 
following. 

(i) When there is no change of the fluid elements’ density (y  = 0 ) ,  the mean-square 
displacement z” of marked particles ceases to grow when t 2 8-l, and its asymptotic 
value is proportional to G / W ,  where the constant of proportionality, ?(a), is O(1) 
and a decreasing function of (NT)- l .  This result is also shown to be a general 
consequence of the finite potential and kinetic energy in the stationary turbulence. 

(ii) If there is a small diffusive interchange of density between fluid elements (i.e. 
y 4 l ) ,  the marked particles’ mean-square displacement has a slow linear growth (i.e. 

(iii) Such molecular processes must also dilute the initial concentration of con- 
taminants (e.g. dye or smoke) in those fluid dements that diffuse above the limit 
in (i). 

( iv) The mean-square fluctuation of density is proportional to the product of the 
asymptotic mean-square displacement of marked particles and the square of the mean 
density gradient (-9) (i.e. 7 = g 2 F  = +P(a, y = 0) 9zzw’/N*). 

(v )  The flux Fp of density in a turbulent flow can be expressed exactly as the sum 
of two terms, the first $ ( d F / d t )  9, being caused by thc growth of the displacements 
of fluid elements, and the second Z(p +p ’ )  being caused by the mixing between fluid 
elements. In  stable flows, it is shown that the second element is dominant, and 
Fp - yGNp,g while the first is smaller by O(y) .  

Previous laboratory and field measurements of w2, Z 2 ,  p‘2 and K , ( t )  are discussed 
in some detail and shown to be consistent with this model. 

- -  
2 2  - W2/N2(  1 + O(y2)tN). 
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1. Introduction 
The vertical diffusion of particles released from a steady source in a homogeneous 

stably stratified turbulent flow is poorly understood, even at a qualitative level. From 
a practical point of view, this lack of physical understanding means that even the 
appropriate dimensionless form of the relationship between the vertical displacement 
Z and the statistical features of the vertical velocity field w are uncertain. We list 
below some of the salient features of vertical diffusion with some of the questions that 
they raise about the diffusion and the dynamics. 

(i) Consider a turbulent flow with neutral stability. On average, fluid elements from 
a source move vertically an ever increasing distance as time proceeds, while the 
mean-square fluctuating velocity of a fluid element remains constant (Lin & Reid 
1963). However, in a stratified flow, a large source of energy is required to give fluid 
elements large vertical displacements (assuming their densities remain unchanged). 
For a given kinetic energy of fluid elements (equal to +pGE, where 3 is the mean-square 
vertical velocity as measured a t  a point), and a roughly equal partition of energy 
between kinetic and potential forms, it follows that fluid elements can only diffuse 
through a vertical distance of the order (W2):/N, where N = [gp;’ ’914, pa is the mean 
density, g is the gravitational acceleration and -3  is the mean density gradient, 
which is assumed to be uniform and is not affected by turbulence. So, to understand 
vertical diffusion in stable conditions, one must consider the  dynamical effects of 
buoyancy forces (Priestley 1959). One must also consider mixing because, over 
sufficiently long times, there is always some exchange of density between elements 
of the fluid by molecular processes, and then the vertical diffusion can increase 
without limit. Under what circumstances and over what timescales do these density 
changes become more significant ? If the density must change by molecular diffusion 
for fluid particles to travel large distances, then surely the concentration of contaminant 
marking the fluids must be reduced by molecular diffusion ? 

(ii) An important practical question is whether such plume behaviour is consistent 
with representing the diffusion by a gradient transport model, involving an eddy 
diffusivity. Consider, a t  a time t after their ‘release’ or their ‘marking’, the 
mean-square vertical displacement of an ensemble of fluid elements. If the 
Lagrangian autocorrelation function of the vertical velocity W ( t )  of the elements 
is RW(7) = W ( t )  W ( t + 7 ) ,  then, following Taylor (1921), when t 9 TL 

where 

- 2 p  [ TL t - Jam 7R,(r) dT] ,  

~- 
TL = jo* RW(7)dr, W2  = w2. 

The second term of (1.1 ) is negligible, if TL =k 0 as t / T L  -P 00, so that  z” grows linearly 
with time as if it were governed by a diffusion equation with diffusivity GTL.  But 
if d p / d t  z 0 a t  large times, as in the laboratory experiments of Britter et al. (1983 
hereinafter referred to  as BHMS), and some of the field observations of Hilst & 
Simpson (1958) and Kofcred-Hansen (1962), then it appears as if TL z 0 and the 
second term dominates, clearly a most undiffusionlike process ! 

(iii) This raises the question of how R,(t) changes its form as the timescale of 
vertical oscillation in a stratified fluid becomes smaller than the dynamical ‘turnover ’ 
or Lagrangian timescale T ( z L,/(&?)i), i.e. as NT increases (L ,  is the spatial integral 
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of the vertical velocity fluctuations). Some laboratory measurements of Rw(t) by 
Frenzen (1963) will be compared with our theory. 

(iv) In  a stably stratified turbulent flow, not only does the vertical velocity a t  a 
point vary randomly, but so does the density. Therefore there may be a difference 
between the behaviour of an ensemble of fluid elements of one density and that of 
all fluid elements passing a point. Which of these two ensembles represents dye or 
smoke of constant density released into a turbulent flow '1 Another implication of the 
density fluctuations is that it may be possible to infer, from measurements of 
fluctuating density a t  a point, the vertical diffusion of particles released into a flow 
(Lange 1974). 

These features of turbulent diffusion in a stably stratified flow can only be 
understood by a dynamical and kinematical analysis of the vertical motion of fluid 
elements whose density can change by mixing. Since we are particularly interested 
in diffusion a Lagrangian analysis is essential, but, because it is a Lagrangian rather 
than an Eulerian analysis, i t  is inevitably more speculative. Most approximate models 
of stratified turbulence have been developed in an Eulerian framework for the 
purpose of estimating mean flows, scalar fluxes and variance of turbulent velocities 
(e.g. Launder 1976). 

In  the Lagrangian mathematical model developed in this paper, the turbulence is 
assumed to be homogeneous and stationary in time. I n  reality turbulence must either 
be slowly decaying (as in homogeneous turbulence in the nocturnal layer), or 
sustained by shear or interactions of internal waves. In the former case we may 
assume that the timescale of decay is somewhat greater than the buoyancy timescale 
N-l (see $5). In the latter case we assume that the vertical fluctuations are stationary 
random functions of time (see 54.3). 

The model is an extension of that of Csanady (1964), and is of the Langevin or 
' random-force ' type used previously to describe turbulent diffusion in neutral flows 
(Lin & Reid 1963; Krasnoff & Peskin 1971), and similar in form to the Langevin 
equations in the theory of Brownian motion. The aim of such models is to derive the 
vertical displacement zz(t) and the Lagrangian velocity autocovariance FR,( t )  of 
small particles in terms of some random forces acting on them. Here we consider fluid 
elements under the action of pressure gradient fluctuations. The theory is only useful 
if z" and Rw(t) can be deduced from wi and from weak assumptions about the 
pressure-gradient spectrum cD(s). A useful dcductive theory can be constructed firstly 
because @(s) is essentially a 'white-noise ' spectrum over most of the inertial subrange 
of spectrum (Monin 8: Yaglom 1975, $18.3) and secondly because @(s) is largely 
determined by the rate of energy dissipation per unit mass 6, which is insensitive (for 
given ut' and T) to stratification (see BHMS and $2.3). If the change of a fluid 
element's density is estimated by Burgers' model (Hinze 1975), then the model also 
shows how the density flux varies with N ,  3 and T. 

The model equations may be viewed in two equivalent ways, either as derived from 
the exact equations of motion of the fluid in a Lagrangian form by the approximation 
of certain terms, or in a more physically appealing way as idealized equations for the 
motion of finite but small parcels of fluid, with dimensions small compared with any 
integral scale of the turbulence, but large compared with whichever is the larger of 
the viscous Kolmogorov microscale, and the diffusive microscale, defined in Monin 
& Yaglom (1975, p. 200). 

In Csanady's (1964) theory, the pressure gradient and viscous forces on a fluid 
element are entirely replaced by a stochastic force; in contrast, Lin & Reid (1963) 
and Krasnoff & Peskin (1971, hereinaftcr referred to as K P )  add a damping term, 

8 2  
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linear in the velocity, but which is primarily intended to represent the effects of 
viscosity. In  a stable density gradient there can be wave-like motions a t  all scales, 
and we suggest that  the generation and transmissions of such motions act as a local 
damping mechanism for vertical motions of the fluid. Therefore this damping is 
approximately proportional to the (local) buoyancy frequency. The model has both 
turbulent and wave-like features without drawing a sharp distinction between them. 
Further discussion of this point is given by BHMS. The observations of Gartrell(l979) 
and Hunt et aE. (1982), for instance, show clearly how motions in a stably stratified 
shear flow can be a mixture of waves and turbulence. 

In $2 the basic model is set up, the equations solved, and the form of the random 
forcing discussed. In  $ 3  numerical and analytic results for plume shapes, vertical 
velocaity correlations and density fluxes are presented. In  $4 the relation between 
density exchange among fluid elements and the vertical density flux through the 
system is investigated, both in terms of the model and by more general arguments. 
I n  $ 5 ,  the theory is compared with experimental observations, in particular the recent 
results of BHMS on plume shapes and velocity fluctuations in stratified grid 
turbulence. An attempt is made to correct the theory for decaying turbulence 
intensities. 

2. A random-force model of fluid-element motions 
2.1. Equations of motion 

If W is the vertical velocity, v the kinematic viscosity, K the molecular diRusivity 
of the scalar responsible for the density gradient, p’ the density perturbation from 
the local mean value p ,  p’ the pressure perturbation from its hydrostatic value, then, 
on making the Boussinesq approximation, the equations for perturbation quantities 
are, following a fluid element (Csanady 1964, equations (6), (1 l)), 

dW gp’ 1 dp’ --+- = ---(t)+vV2W(t), 
dt Po Po a Z  

In the absence of molecular diffusion W ( t )  defines the velocity of a vanishing small 
volume of matter. But since molecular diffusion enables molecules to pass in and out 
of this volume, eventually it may contain none of thc original molecules, and therefore 
W is defined over a vanishing small ‘ control volume ’ moving a t  the local fluid velocity 
(Saffman 1960)t - figure 1 (a ) .  A small but finite control volume loses even the original 
fluid elements (this takes a timescale t - ~ $ 4  if I, is small, but larger than the 
microscale ( v3 /c ) ! ) .  In  this casc the limit W describes the motion of a small material 
volume only over. a limited time. The eventual difference between molecular 
trajectories and fluid element trajectories makes the deduction of the latter from 
concentration measurements somewhat conjectural (figure 1 b )  ! Fluid elements which 
pass through the source are referred to as ‘marked fluid elements’, even though it 
is likely that any physical sign of their marking may transfer itself to other fluid 
elements. 

In  considering how to model the damping of vertical motions by viscous forces and 
the generation and propagation of waves, we recall two experiments. I n  the first a 

t It  was pointed out by a referee that  this implies that  dp/dt  $. 0 and therefore tha t  V. u =+ 0. 
However, the error on scales O ( p o / 9 )  is negligible. 
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FIGIJRE 1 .  (a)  Movements of a small patch of pollutant released from source: ---, paths of marked 
molrcules or particles of source (e.g. dye or smoke) ; -. fluid-element paths (parallel to local 
velocity vector). Note how they eventually diverge. (b )  Regions of plume behaviour in typical plume 
in stable condition: ( A )  source region where contaminant diffuses into the fluid and is accelerated 
into motion; ( B )  fluid element and marked molecules move t,ogether; (G) divergence of paths 
between fluid elements and marked molecules. 

Radiation 
~ o H ( t )  6V of waves 

6 V  

FIGURE 2 .  Forces on a fluid element a t  Z(t)  moving upwards with a velocity W ( t ) .  Z,(t) is a typical 
trajectory of an element released above its equilibrium point 2, uilh no am,bient turbulence. 

ball is released in a stratified tank of water above or below its equilibrium level and 
returns to its equilibrium position in one or two oscillations, as if the fluid is as viscous 
as treacle (see, e.g. the film by Hunt (1976) - figure 2) .  Larsen‘s (1969) experiments 
and calculations of a sphere oscillating about its position of equilibrium showed that 
this ‘stickiness’ is really due to the sphere radiating waves with most of the viscous 
dissipation taking place far away. He calculates an exact representation for small- 
amplitude motions of the sphere 

d”Z Z(t)-Z(0) 1 dZ 
- + W Z  = 
dt2 t 2  t d t ’  

A simpler but less accurate represent,ation is 

(2.3) 
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if the dimensionless parameter p (,< 1 )  is taken to be a slowly varying function of 
amplitude. In  a second experiment, a parcel of$uid is released away from its 
equilibrium level in a linear density gradient (Cerasoli 1978), and a similar damped 
motion is observed. Cerasoli’s experiments suggest that  most energy is propagated 
away a t  an angle to the horizontal, corresponding to a frequency of oscillation of 
the entraining fluid parcel of d$ N .  This corresponds to  a value of p = z/+ = 0.7 in 
(2.3). (Note that the speed of propagation of such internal waves in a turbulent flow 
is of order NL,. This is much less than the mean-flow velocity, since NL,  - uw 4 U.)  

On the basis of these observations we assume that the pressure and viscous forces 
acting on a fluid element in a turbulent flow can be modelled by 

1 dpf  
+vV2W(t )  = -2bNW( t )+H( t ) ,  

Po dz 

where the damping coefficient PN is approximately linear in N .  We do not see much 
merit in refining (2.4), at this stage of our understanding, to allow the damping to 
be frequency-dependent, e.g. by replacing -2/3W(t) in (2.4) by a convolution integral 

-qm N - 7 )  W ( r ) d 7 ,  
for some damping function p. 

As in previous models the fluctuating pressure gradient H ( t )  is assumed to be a 
stationary random function. In  fact this model for the pressure and viscous forces 
on a fluid element can be thought of as representing the forces duc to the wave 
motions set up by that $uid element in the first term and the forces due to the 
accelerations and waves caused by all other f lu id  dements in the second term H(t ) .  

The rate of change of the density difference between a fluid element and the mean 
density of its environment is determined by its vertical advection and by molecular 
diffusion acting on local density gradients. It is natural to express the timescale for 
this process in terms of N .  Following Burgers (see Hinze 1975, chap. 5)  and Csanady 
(1964), we model the density diffusion by 

kV2p’ = -yNp’ ,  (2.5) 

where (yN)-l  is the timescale for the fluid elements to change their density. There 
is now evidence to suggest that  y is only a slowly varying function of NT, where T 
is a typical timescale of the turbulence. See $4 and Hunt et al. (1982) for discussion 
of the value of y .  

Combining (2.1), (2.2), (2.4) and (2.5) gives 

dW -+2pNW+- gp’ = H ( t ) ,  
dt Po 

These are the model equations for the position and density of a fluid element, which 
are solved in 52.2. 

2.2. Method of solution 
The coupled linear stochastic equations (2.6), (2.7) are solved by Fourier-transform 
methods to find p ( t ) ,  v(t) and p’2(t) in terms of the spectrum @(s) of H ( t ) ,  which 
is assumed to be a stationary random function. Defining 

W 

H ( t )  = eist B(s) ds ;  J- a3 (2.8a) 
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where I?($’) A*(s) = S(S-8’) qs), (2.86) 

then W ( t )  and p’(t) can also be expressed in terms of I?(s) by means of the deterministic 
transfer functions M(s,  t )  and Q(s, t )  as 

a, a, 

M(s ,  t )  A(s) ds, p’(t)  = s Q(s, t )  A(s) ds. (2.9) 
-m 

Substitution of (2.8) and (2.9) into (2.6) and (2.7) leads to the equations for M ,  

dM sQ 
dt Po 

~ + 2PNM + - = eist, 

dQ --$M = - y N Q .  
dt 

(2.10) 

(2.11) 

Since W ( t )  and p‘(t) must also be stationary random functions, the appropriate 
solutions to (2.10), (2.11) are 

where 

(2.12) 

(2.13) 

To evaluate Z ( t ) ,  we need only integrate (2.12) with respect to time. The constant 
of integration is supplied by the constraint that the fluid element passes the origin 
a t  zero time, i.e. Z ( 0 )  = 0 for each realization. Then 

(2.14) 

which is the vertical displacement of a fluid element whose density and velocity a t  
t = 0 are random. It may be of interest to calculate p(t) for the ensemble of fluid 
elements whose equilibrium level is equal to the source height, i.e. p’(t = 0) = 0. 
Solving (2.6), (2.7) subject to this initial condition (in the limit y = 0) yields 

(2.15) 

where 6 = (1  - pz)$ (P < 1 by assumption). 
Whether a real plume is more accurately modelled as the passive marking of fluid 

elements of all densities, as they pass the source, or alternatively by only averaging 
over an ensemble of elements of fixed density depends on the details of any initial 
mixing very close to  the source (Puttock 1976). 

2.3. Computation of variances 

The variances F ( t ) ,  z”(t), p’”(t) and the velocity autocorrelation function 
R,(t) = W ( t )  W ( t + T ) / F  are now calculated in terms of the normalized pressure- 

& ( w )  = @ ( s ) / F N ,  (2.16) gradient spectrum 

where w = s /N.  
The weak effect of stratification on O(s) depends on the parameter a = l/(N5”). 
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\ 
I + 

a(<  1) w =  1 a Ref  > 1 

4 * -(e/")4Iiv 
Inertial subrange 

FIGXJRE 3. Sketches of the Lagrangian pressure-gradient spectra di(a)(o~) and i6(b)(o) corresponding 
to  forms of (2 .25a,  h ) ,  (when a Re: b 1, y < l ) ,  and of the transfer functions P-'(w) and wZp- l  
relating mean-square displacement 3 and velocity to  the pressure-gradient spectrum d i ( w ) ,  
when ,Vt b I and y2Nt @ 1 .  

(%) w(= SIN)--- 

By standard methods (e.g. Yaglom 1962) for stationary random processes, it 
follows from (2.12)-(2.14) that  

where 

(2.17) 

(2.18) 

(2.19a) 

and @(o, a )  satisfies the normalization condition 
co 

1 = ( y 2 + w 2 ) 6 ( W , a ) ~ ' - l ( W ) d W .  (2.19b) 
J-ZC 

Also p(t) = ~ ( N t ) ~ / X 2 ,  where, if the ensemble of adl particles passing through the 
source is considered, 

( 2 . 2 0 )  

See figures for sketches of typical forms of ppl and 6. 
Sinrc the turbulence is homogeneous and stationary, Lumley's (1962) argument 

shows that the ensemble or time mean-square velocity of a fluid element should be 
equal to that of all fluid elements and should also be equal to the mean-square velocity 
measured at any point in the flow, i.e. 

~- w2 = w2. (2.21) 

In  strongly stratified flows, the velocity integral timescale can be rather anomalous 
as y or N vary. If it is defined as usual, then from (2.17) 

(2 .22  a )  
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Thus TL = 0 if &(w = 0) = 0 or if y + 0 (i.e. no mixing occurs). Therefore it may be 
convenient to define another integral scale Tfj-) in terms of the first moment of RW(7) 

(2.22b) 

(When y = 0, Tfj-) = N - ’ ~ ( c o ,  y =0) = (zz)z / (W 1 7 1  )2 from (3.3b)). 

2.4. Forms of the pressure-gradient spectrum @(s) 

Since the stratification affects 2 and Wit must also affect @(a). It is certainly observed 
in the atmospheric boundary layer that @ ( s )  is changed by stratification in the 
energy-containing range (i.c. s 5 vW/L,). However, it is also observed that the effects 
of even moderately stable (or unstable) stratification do not measurably change the 
structure of the intertial subrange of the Eulerian turbulent velocity field, nor the 
value of the Kolmogorov constant in the inertial subrange, nor the value of 
s/((G)g/Liw)) where L(w) is the integral scale of the vertical velocity fluctuations. (By 
moderately we mean 7G)i/(Liw) N )  2 1 ; see e.g. Kaimal 1973; BHMS; Hunt et al. 
1982.) 

In  neutral conditions in the inertial subrange, the Lagrangian velocity spectrum 
is (Monin & Yaglom 1975, p. 361) 

Q W ( S )  = B,es-2, (2.23) 

where B, is a universal constant (B, z 0.6, according to recent atmospheric observ- 
ations by Hanna 1981). Consequently in neutral conditions, when sT B 1 ,  since 
the pressure-gradient spectrum must be equal to the product of the acceleration 
spectrum (Monin & Yaglom 1975b, p. 371) and pi ,  

@(s)  a E ,  &(u, a )  N const cc E/(ZN) ,  (2.24) 

where T N e / z  - TP) and is the natural integral timescale of the turbulence. Since 
(2.23) is also valid in most stable conditions, we assume (2.24) is also valid. 

Since a wide variety of forms of the Eulerian vertical velocity and temperature 
spectra are observed, we explore the implications of our model by considering two 
forms for @(s). Our results when normalized in terms of w” are found to bc rather 
insensitive to the forms of @(a), which are assumed to be as follows. 
( i )  Csanady’s form 

&[a1 cc o2/ (w2 + a2), (2.25 a )  

which satisfies (2.24) when w / a  9 1 and tends to zero when w + 0. It does not describe 
the decrease of 0 in the microscale part of the spcctrum. 
(ii) The Krasnoff & Peskin spectrum 

( 2 . 2 5 b )  

which satisfies (2.24) when w/(aReh) 4 1 (where Re = ( W ” ) z / ~ ~ )  and is finite when 
o + 0. To satisfy (2.196). when aRe4 & 1 and, y2  6 1 ,  in the limit of w 4 Re:, 

&[bl = 2p/Tr. (2.25 c )  

Another spectrum with a similar form is 

&[b]  cc exp ( -  Iwl/a^). (2.25 d )  

It is clear from (2 .22)  that the zero-frequency limit of & determines the long-term 
diffusion of fluid elements (or Lagrangian points in the fluid, following the continuum 
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velocity fluctuations). The two forms [ a ] ,  [b] above for 6 used respectively by Csanady 
and Krasnoff & Peskin have different low-frequency limits and quite different 
characteristic timescales (see the appendix). 

3. Development of the particle displacements 
3.1.  Initial development 

Consider the growth of p(t) immediately after the release or marking of the particles. 
If we take the limits t 6 N-l  and t 6 T ,  then (2 .20)  gives 

- 
cf3(Nt) = N t 2 S m  ( Y ~ + u ~ ) & ( w ) ~ ) - ~ ( w ) ~ w ,  

--m 

whence 3 = T t 2  = - w2t2 when tN + 0, t + T. This is the same as Taylor's (1921) 
result for the initial period of diffusion when fluid-element velocities are well 
correlated with their initial values. This result enables 2 to be deduced from 
measurements of even in a stratified flow (BHMS). 

3.2. Ultimate development 

To obtain its asymptotic form as Nt +oc) using standard methods (e.g. Pasquill 1974, 
chap. 3 ) ,  (2.20) is rewritten as 

Noting that sin ( h N t ) / ( & )  -+ 27rS(w) as Nt + 03, i t  follows, in the limits Nt + 03 

C ( t N +  03) = [ p ( ~ , y  = 0)+2tN(NTL)] ,  (3 .3a)  
and y 6 1 ,  that  - 

m - 
C(O0, y = 0 )  = 2 s & ( w ) P ( w ) d w ,  where 

--m 

and 

(3.3b) 

(3 .3c)  

Thus in the limit y + 0, the 'plume' (i.e. the r.m.s. displacement (Z'z);) levels out 
a t  a thickness O ( ( G ) i / N ) .  But if y is finite i t  grows parabolically, as in uniform 
neutrally stable turbulent flows. Which of these two developments occurs depends 
on the square of the ratio y of the buoyancy timescale N-' to the timescale for mixing 
between fluid elements. We shall show in $ 4  that  y can be estimated from the heat 
or density flux in a stably stratified flow. (Typically y lies in the range 0.1-0-4 in the 
stable atmospheric boundary layer.) 

The level of density fluctuations can be expressed in terms of the asymptotic r.m.s. 
displacement. From (2 .18) ,  when y + 1 

7 = 4923N-2 tS"(.o>Y = 0)) ( 1  + O ( Y ) )  

= $P(zz( 00, y = 0 )  + O ( y 3 / N 2 ) ) .  

( 3 . 4 a )  

(3 .4b)  

In  general the fluid elements, which are 'marked ' as they pass through the source 
at Z = 0, have densities different from that of the mean density at the source, and 
therefore have 'equilibrium levels' which differ from Z = 0. What is the variance of 
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B and C 

D 

Turbulence Source S - 
generator 2(Z+ 

Initial 
vertical positions 

FIGURE 4. Fluid elements starting at equilibrium set into motion and then passing through the 
source S. (D)i is plume depth of all particles through S; ( p ( @ ) k  is the plume depth of those particles 
with equilibrium height at z = 0 (denoted by dashed arrows). 

FIGURE 5. Vertical-velocity autocorrelation RW(7).  [a] From (3.6): ,8 = 0.8, a( = 1 / N T )  = 1 ; y = 0. 
[b] From (3.7): ,8 = 0.8. ---, typical form for RW(7) in neutral conditions. 

Note TL( = jnm RW(7) d7) = 0 for [a] and TL > 0 for [b].  

the displacement of fluid elements about their equilibrium position, i.e. where 
p ' (0 )  = 0'1 Denoting this variance by F(@, it follows from (2.14) that  

Comparing (3.5) with (3.3b),  we note that 
-(9) 
2 2  (Nt -+a) = tzz(co) 

(3 .5a)  

(3.56) 

in the absence of molecular diffusion. Thus the variance of equilibrium levels of 
particles being marked at the source is also +p(oo). Sec figure 4, and other graphs 
from computations in Puttock (1976). 
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3.3. Intermediatp t imps (y  = 0) 

For NT $ 1, we would expect there to  be three identifiable power-law regions of 
‘plume growth’ or of z ” ( t ) .  Firstly for small times ( t  -4 7’) we have the linear growth 
of (p)* (3.1). In the intermediate range (3” -4 t 4 W1), while buoyancy forces have 
not yet taken effect in limiting ”, one expects the parabolic growth of ( p ) i  found 
in neutral flows a t  large times. Computations of the integral in (2.20) shown in figure 
6 ( a ) ,  show this parabolic growth of ( p ) i .  Finally, for t 9 N- l ,  the analysis of 93.2 
is applicable. When NT 2 1, there are only two regimes of the plume growth, the 
small-time linear growth of (3.1) merging into the asymptotic constant ‘plume ’ depth 
given by (3.36). 

3.4. Anulytic and numerical Pvaluations 

The two forms of the pressure-gradient spectra specified in (2.26a, 6 )  yield different 
expressions for the autocorrelation function Rw(7),  and for the growth of p, 
expressed in the dimensionless form 5“ 
( a )  

RE’ (7) 

- 2a3Pp-a7N + 6-1 p - f l T N  [8( 1 + az( 1 - 4p2) cos 87-N) -p( 1 + a2(3‘ 4p2) sin 87N)] 
- 

B( 1 + 2ap) 

(3.6) 

1 (3 .7)  

(3.8) 

(3.9) 

Since He b 1, spectrum [6]  reduces to const/d2 or ( 2 . 2 5 ~ )  for the frequency scales of 
interest. Then (3.7) and (3.9) reduce to 

RF(7) = e 

(3.10) 
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The predicted forms of H W ( 7 ) ,  the Lagrangian autocorrelation function, are plotted 
in figure 5 for the two different spectral forms used in (3.6) and (3.7). The differences 
are not marked; both display the negative values when NT > 1 ,  which have been 
remarked on before by others (e.g. Csanady 1964; Pasquill 1974), a feature not found 
in calculated or observed forms of R, in neutral conditions. For the computations 
shown in figure 5, we have taken the wave-damping factorp( = k / N )  = 0.8 to be close 
to the value z/t suggested by Cerasoli's (1978) observation. In  this case 8 = 0.6. 

In figures 6 ( a d )  we plot various aspects of the development of the 'plume depth ' 
( p ( t ) ) h ;  it is most economical to discuss all of them together with the analytical results 
just obtained. First, i t  is clear from the formsofa(@), theLagrangianpressure-gradient 
spectra, and the transfer functions P- ' (w)  and w 2 p p ' ( w )  (for the limits Nt + co and 
y = 0) as defined in (2.19) and sketched in figure 3, that  to the first approximation 

(3.11) 

so that p ( 0 0 , y  = 0) - 1 .  However, figures 6(c,d) show that as a decreases (i.e. 
increasing stratification) y"( 00, y = 0) increases. but tends to a limit in the ease of 
the spectrum La], and increases continuously in thc case of [b] .  The reason is that  
J a P - l d w  is a constant fraction of for [a] when a 6 1, but a steadily 
increasing proportion of jw2P- l@ dw for [ b ] ,  because @rb1(w) is decreasing when 
aRe 5 1 .  

Secondly, figure 6 shows that the normalized asymptotic plume width p(t)  is rather 
insensitive to the form of @ ( w ) ,  when tN 9 1 ,  y 4 1 ,  and tNyZ 4 1 .  This is because 
p(00) and w2 are, to  first order, both proportional to &(w = N ) .  This generalization 
is most likely to be true when N lies within the range of frequencies of the inertial 
subrange. (One might expect significantly different results between low-Reynolds- 
number laboratory turbulence (when there is a very limited inertial subrange) and 
field observations.) Whcn Nt 2 y P 2 ,  thc effcct of fluid elements changing their density 
appreciably increasesF(t) for the spectrum [!I], but not for the spectrum [a] ,  because 
the growth of z"(t)  depends crucially on the for% of & ( w )  as w -+ 0, as (3.3) shows. 
In  neutral flows, &(w = 0) = 0, if = H ( t )  and Z2 is bounded (Lin 1960). Whether 
or not there can be some small but finite value of @ ( w )  as w --+ 0 in uniform stable 
flows IS a n  important but unanswered question. At such scales other effects such as 
inhomogcneity of the turbulence may makc the question irrelevant. 

P - l & ( w ) d w  - $(w = l )p-I ,  w 2 P - ' 6 ( w ) d w  - 6(0 = l)P-' ,  I 00 L, 

4. The density flux, motions of fluid elements and molecules, and some 
dynamical consequences 

4.1. Density JEW 
The average density flux Fp is defined in Eulerian terms, denoted by ()(E), as the 
time or ensemble average of the product of the local density and vertical velocity 

(4.1) 
at (x, t )  : Fp = ( p + p ' )  (x, t )  W(X, t ) tE )  = p'(X,  t )  W(X, t ) ( E ) -  

In  a homogeneous stationary flow Elp is uniform and can be expressed in Lagrangian 
terms as bhe ensemble (or time) average for one, or all, fluid elements of the product 
of the density (p+p ' )  ( t )  and vertical velocity W'( t ) .  Therefore 

(4.2) Fp = ( P + P ' )  ( t )  w(t). 
Before calculating Fp with our model, it is instructive to  consider the causes of 

density fluctuations and density flux in a stably stratified flow. 
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FIGURES S(a-c).  For caption see facing page. 
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FIGURE 6. (a) Forms of solution for p(t) for strong stratification (curve @a( = l/NT,) 6 1) and 
weak stratification ( c u r v e a ,  a %- 1) and very weak effects of density mixing between fluid elements 
(y < l ) ,  showing also the effects of different spectral forms on the asymptotic behaviour. ( b )  
Development of the square of the plume depth, p(t)  for two forms of spectra [a] and [b] from (3.6), 
(3.7).  ---, Asymptotic values as t +co ( a  = 1, y = 0 ;  /3 = 0.8, â  g-1). (c) Asymptotic plume depth 
squared p(  a), when y = 0, as a function of stratification for two spectra of the form [bl, that  is 
6 ( w  = 0) + 0. 0, 6 ( w , a )  = e x p ( - l w l / d ) ;  -0-, & ( w , a )  = 1 / ( w 2 + d 2 ) .  ( d )  Asymptotic plume 
depth squared for varying values of stratification and of diffusity y ,  when 6 = w 2 / ( 0 2 + a 2 )  (type 
[a] spectrum). --0-, y = 00; 0, 0.2; B, 0 5 ;  A, 1.0. 

Consider the expression for p' ( t )  obtained by integrating (2.2) : 

(4.3) 

This (exact) expression shows how density fluctuations are caused by the vertical 
advection of the fluid elements with different densities and by the actual change in 
density of fluid elements produced by mixing with neighbouring elements. 

Multiplying (4.3) by W ( t )  and evaluating the integral givest 

1 d F  
2 dt 

Fp = - - ( t )%+AP(t )  W ( t ) .  (4.4) 

The first, advective, term was given by Corrsin (1951). The second 'mixing' term 
involves A p ( t ) ,  the change in density of a fluid element, which is equal to  

J: (d (p+p ' ) /d t ' )  dt'. 

Expressed in non-dimensional form, (4.4) becomes, using ( 1 . 1 )  and (1.2), 

(4.5) 

where 5 = NT,, TL being the Lagrangian velocity integral timescale, and 
K p  = F p / 9 ,  K p  being the the eddy diffusivity of density. Equation (4.3) shows how 

F,, is here the flux produced by fluid elements a t  time t which were released at time t = 0. Since 
F,, is found to be independent o f t ,  (4.4) is valid for all time. 
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Density loss to surroundings 

- - -  

1 = t ,  

FIGURE 7 .  Schematic diagram showing net, vertical density transfer between fluid 
elements having restricted vertical motions (after Puttock 1976). 

a vertical flux can exist even if TL = 0, and if the mean-square vertical displacement 
of fluid elements is bounded. The process by which the fluid elements transfer density 
while performing bounded oscillations is illustrated in figure 7 ,  and is discussed in 
greater detail in Puttock (1976). 

The dimensionless density flux 9 can be calculated with our Lagrangian model. 
From (4.2). (4.5). (2.12) and (2.13), 

m 

9 = J-, ( y + i w ) @ ( w ) P - l ( w ) d w ,  (4.6) 

whence using the Hermitian symmetry of &(o) and (3.3) 

- 00 

9 = y J  @(w)P- ' (w)dw = @(a, y = 0). (4.7) 
- W  

T a k i n g p ( a ,  y = O)asgivenby(3.8) and(3.9)forthetwomodelsof pressure-gradient 
spectra defined in (2.25a, b ) ,  

9 " a l  = ~ 1 + Y 2ap' 9 [ b 1  = Y (1 + 3). 
Thus, in general, 9 does not have the same value for both spectra. (This would only 
occur in a flow where N lies in the inertial-subrange part of the pressure-gradient 
(@(s)) spectrum, in which case the inertial range would not have the form of (2.24).) 

Comparing the magnitudes of the terms F and 9 in (4.5) gives a measure of the 
relative contribution to the density flux by the rate of increase of the mean-square 
displacement of marked fluid elements. From (2 .22a) ,  

(4.9a) 

For spectrum [a] F"a1 = 0, but, for spcctrum [b]  when a + 1, y + 1 ,  uaing (2 .25c ) ,  

F"b1 = 2py2. (4.96) 
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Thus, when y 4 1 ,  A p ( t )  W(t)  is O ( y - l )  larger than % d P / d t .  
Another way of looking a t  this result is to compare neutral flows, where 

t 
- = 2Kp when - 9 1 ,  
dz" 

dt TL 

with stably stratified flows, where 

( 4 . 1 0 ~ )  

(4.10b) 

In  neutral flows the eddy diffusivity is proportional to the rate of growth of z", 
because the flux is carried by the marked fluid elements moving across the wholeflow. 
I n  stable flows the flux is carried by limited fluid-element displacements and mixing 
between the elements. The flux produced by the large-scale displacements (cc d P / d t )  
is only a very small proportion of the total flux. 

So far we have only considered y 4 1. What about larger values of y (corresponding 
to weaker stabilities) 1 From the contour integrals the large-aRe limit (high-Reynolds- 
number turbulence) for Rw(t) with spectrum [b] can be derived: 

where 

(4.11) 

Figure 8 ( a )  shows the non-dimensional vertical density flux 9 as a function of y 
and a for spectrum [a],  evaluated from (4.7) and (4.4). Figure 8(b )  shows the density 
flux and the non-dimensional integral timescale (which indicates the flux of marked 
fluid elements) for spectrum [b] with aRea 9 1 .  Note how F ( =  NTL) becomes of the 
same order of magnitude as F for y = O ( l ) ,  but is negligible for y 4 1.  When 
y 0(1), the density flux is mainly carried by fluid elements rather than being 
transferred between them. 

4.2. Diffusion problems 
Mixing between fluid elements also affects the diffusion of marked molecules or 
particles, e.g. dye, gas or smoke, released into the flow at  the source (figure 1 ) .  The 
result ( 3 . 3 b )  suggests that, when this mixing is slow compared with the turbulent 
motions' timescale ( y  4 i) ,  a 'plume's' growth may level out with a depth of order 
(w")i/N, and then, after a time N- l~ -~ , i  may grow parabolically like ti. Since the latter 
growth rate is only possible if the molecules of the ambient fluid diffuse into and out of the 
fluid elements, the marked molecules or particles must also diffuse out of the original 
marked jlukl elements which passed through the source. 

Since, as we have demonstrated, the mixing between fluid elements can be more 
rapid than the rate of growth of the fluid elements' displacements, this means that 
the mean square displacement of the marked molecules (a$@)' may grow faster than 
that of the fluid elements. I n  that case 

g y ( t )  > z"( t ) ,  

(4.12) 

and c is the mean concentration of marked molecules at time t .  
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FIGURE 8(a ) .  For caption see facing page. 

Some contaminants may take the form of small particles much larger than 
molecules, but much smaller than the smallest, Kolmogorov, scales of turbulent 
motion. Such particles follow the motion of the Jluid elements into which they are 
released (Csanady 1973, chap. 2). Since in stable flows marked molecules may diffuse 
more rapidly than marked fluid elements, i t  follows that, unlike the case of neutral 
or unstable turbulent flows, there may be measurable differences in the ultimate 
growth rates of ‘plumes ’ of particles, such as smoke or liquid droplets, and of ‘plumes’ 
of molecules with the same scale as that of the fluid (e.g. dye or gas). 

4.3. Dynamical consequences of mixing 
The rate of increase of potential energy per unit height in a homogeneous, inviscid, 
non-diffusive incompressible flow in a region confined by solid boundaries, in which 
there is a mean density gradient, can be shown (e.g. by using the energy equation 
of Milne-Thompson 1968, p. 83) to be 

dV 
dt - = SF, 

(see also Pearson 1981, pp. 40, 41). 
Thence, from the expression for Fp in (4.5), if TL > 0 and if fluid elements do not 

mix, the potential energy would increase without limit. Therefore for a turbulent flow 
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FIGURE 8. (a) Non-dimensional vertical density flux B for ib = w 2 / ( w z  +a2) - spectrum [a] (note 
9- = 0). 0,  a = 0.5; X I  1.0; A, 2.5; +, 10.0. ( b )  Non-dimensional flux 9 and integral timescale 
.F for ib = 1 / (w2+@);  cr̂  = 200 -spectrum [b]. ., F; V, F. The arrows indicate the observed 
range of 9 in the atmosphere (Hunt 1982; Hunt et al. 1982). 

started from rest (e.g. by a grid) with a finite amount of kinetic and potential energy 
of order p;E;'i, i t  follows that z" - 2 / N 2 .  

But suppose there is an energy supply (e.g. by a shear flow), in a dissipative but 
not diffusive flow, then is it possible that d D / d t  > 02 If this were possible then the 
buoyancy forces would amplify p(t) and thence w"(t). Therefore it would be 
impossible for w(t )  and H ( t )  to be stationary processes. Thus if the turbulence is 
stationary, an energy supply can only lead to more viscous dissipation. In other 
words, if d p l d t  > 0 and y = 0, then the velocity and acceleration cannot be 
stationary random functions, because of the dynamical effect of particle displacements 
in a stratified flow. 

So i f  energy is supplied and if the velocity and aceeleration are s.r. functions, then 
all the energy must go into viscous dissipation. I n  most real, steady, stably stratified 
turbulent flows, where y + 0, most of the shear energy (typically 8) goes into viscous 
dissipation arid a small part, (typically %) is transferred into potential energy because 
of mixing between fluid elements (Turner 1973, 55.2). 
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We are now in a position to answer the question of when molecular diffusion and 
mixing of density between elements can be ignored in the initial stage of plume growth. 
Substituting (4.3) into the inviscid momentum equation for a fluid element, 
multiplying by W ( t )  and averaging over our ensemble of marked elements, gives 

(4.13) 

The density-flux term Ap W ( t )  in (4.13) for an  ensemble of marked elements from a 
source is less than the second term in (4.4) until a long time after the marking of the 
particles. Since in strong stratification, for t N N - l .  

and since, from (4.4), 

the condition for the neglect of density in (4.13) in cstimating P(t) is 

g P -  

Prom (4.5) and (4.8), Fp may he estimated as  

(4.14) 

(4.15) 

(4.16) 

So the condition (4.15) for the neglect of mixing between fluid elements in calculating 
Z2 rcduccs to  y < 1 .  
- 

5. Comparison with experiment 
The thcory can be cwnipared with observation and measurements of diffusion from 

point sources and density fluctuations in the atmosphere, in wind-tunnel boundary 
layers and in grid-generated turbulence. An example of each of thc first two types 
is given. as well as  a discussion of the observations of BHMS. For brevity, we shall 
use the term ‘plumc’ depth and the symbol vt to  dcnotc ( p ) i ,  the r.m.s. particle 
displaccrnent or the root of the second moment of mean concentration distribution. 

5.1. Howndwry-luyw results 

Hilst & Simpson (1958) report experiments on the vcrtic.al diffusion of a passive tracer 
released from a point 56 m above ground in a stably stratified atmosphere. The 
variance CT; of vc.rtica1 distribution of the tracer was measured at each of four 
distances from the point of rclcasc, over five sets of meteorological conditions (see 
table 1 ) .  It is revealing to  rcplot their da ta  for variance against diffusion timc in a 
non-dimensional form. Time is non-dimensionalized with N ,  the buoyancy frequency, 
and variance with N 2 W 2 ,  where CJ is the mean horizontal velocity measured at 
approximately the source height. It would be preferable to  non-dimensionalizc with 
w2, the vertical velocity variance, bu t  this flow statistic was not reported. The 
resulting composite graph for their five runs is shown in figure 9. 

- 

Now (3.1) may be rewritten in non-dimensional form 
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0 
B A  5 -  0 

0 
0 A  

A 
I I I I I I I I I 

- 
Experiment U N w2/ c r 2  

number (m s-') (S-') x 1 0 3  

A 6 3  0.025 1.06 
L3 5.1 0.023 1.02 
c' 5.2 0015 1.29 
1) 4.6 0009 1.27 
E: 6.0 0034 0 7 4  

~ 

W2/lT2 is estimated from (5 1 )  and hence may be an underestimate by up to a factor of 2 

TABLE 1 Hilst & Simpson's (1958) atmospheric diffusion experiments 

0 

FIGURE 9 Hilst & Simpson (1958) field da ta  on plume widths replotted in non-dimensional form 
(see table 1 )  0 ,  - test A ,  0 ,  test B ,  0, test P ,  A, test D ,  .. t e d  - E Theoretical resultsfrom (3 3 a )  
_ _ ~  , y 6 0 1, gym, y = 0) = 2 ,  ----) y z5 0 4 ,  (F = 0.08), <*(a, y = 0) = 2 

indicating that all the dispersion curves should coincide for small time. Applying this 
formula to the first data point of each set provides an estimate for G6-2 (see table 
I ) .  (In discussing these experiments we assume CT; = F. )  

The values taken for N were estimated by assuming a uniform temperature 
gradient betwccn 30.5 m and 91.5 m, the heights a t  which the temperatures were 
measured. 

Figure 9 then shows that the rate of growth of plumes in stable conditions is quitc 
suddenly reduced or stopped when Nt - 1 .  

It is striking that the data points from tests A ,  B and C (table 1)  lie close to the 
same curve and interesting that the two exceptions to this, tests D and B, are at either 
extreme of the range of atmospheric stabilities occurring during these experiments. 
Test D had the least-stable conditions (N = 0.009 s-l) and the non-dimensionalizcd 
dispersion results lie below the general 1cw: l .  

For the most stable test E (corresponding to the smallcst value of 2 / l J 2  in table 
l ) ,  where a final plume depth is unambiguously established, its non-dimensional depth 
(T, is (.lose to that predicted by (3.8) or (3.9) in the appropriatc range of ST (s tv  figure 
9), and y 5 0.1. 
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FIGURE 11. Vertical spread from a continuous source placed in a turbulent stratified wind tunnel 
boundary layer. For details see text and Chaudhry & Meroney (1 969). 0, 10 yo of C,,; x , 50 yo 
of Cmz; 0 ,  100% of C,, (the maximum concentration given a t  2). 

The results of tests A ,  B,  C are also consistent with the theory, if some mixing 
between fluid elements is taking place. The theoretical curve (3.3) is plotted with 
F = 0.08, a value that would be observed if B x 0 2  and y x 0.4, according to figure 
8. These variations in y are consistent with measured variations in B ; but the cause 
of this variation is unknown. This curve is similar to the data of Hogstrom (1964). 

Another documented example of a plume is that of Kof~ed-Hansen (1962) at Riss, 
where a plume a t  150 m above the ground in an 8 m s-l wind, was observed to travel 
for 20 km in stable conditions ( N  x 3 x lop2 s-l), with little vertical spread (vz x 7 m) 
(figure 10). I n  this case some turbulence measurements a t  5 6 m  indicated 
( G ) i / U  x 0.02 (the turbulence was quite intermittent), so that ( 2 2 ) $ / N  x 7 m - 
quite a reasonable estimate for the plume depth which is consistent with a value of 
y = 0.1. Other examples may be found where this estimate is found to be useful. It 
is probably not appropriate where the source is within a distance of nJN of the 
surface. 

Chaudhry & Meroney (1969) made measurements of the dispersion of a passive 
tracer, from a point source, in a large thermally stratified wind tunnel. Their elevated 
source 0.2 m (8 in.) above the tunnel floor is in the upper part of the boundary layer 
and so the effect of shear on vertical diffusion was small, certainly for the first few 
seconds. Their results for concentration distribution downstream of the elevated 
source (see figure 11, which is figure 35 in their report), show signs of an abrupt 
reduction of spreading of the 50 yo of maximum concentration contour, on the side 
away from the floor, about one second after leaving the source. At z = 0.20 m, the 
mean horizontal velocity is about 2-4 m s-l (8 ft  s-l). At 2.44 m downwind of the 
source Nt N 1.5. 

From the measurements of the intensity of vertical velocity fluctuations (Arya 
1968), under these conditions in the same tunnel, we find 

(2Gz)5/N x 0.08 m. (5.2) 
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To compare the theoretical estimate (5.2) for the plume depth crz with figure 1 1 ,  
it  is assumed that the vertical concentration profile is approximately Gaussian. 
Thence figure 1 1  shows that (T, z 0.064 m (since the SOY/, contour is 1 . 2 ~ ~ ~ ) .  

5 . 2 .  Grid-turbulence results 

Grid-generated turbulenre decays away from the grid and the development and decay 
of velocity fluctuations is associated with the growth and final decay of density 
perturbations. This must be borne in mind when interpreting the results of such 
diffusion experiments. 

I n  an earlier paper (BHMS) measurements are presented of the development of a 
plume of passive tracer in stably stratified grid turbulence, for a range of mean density 
gradients. Velocity fluctuations were also measured in two cases: neutral flow and 
for stable flow with U / M N  = 1-06, where M is the grid mesh size. They find that 
horizontal plume growth, ( T ~ ,  is weakly if a t  all influenced by the density stratification 
even for U / M N  z 1.06. The growth of the plume in the vertical, (T,, is attenuated 
by the density stratification, with (T, increasing to a maximum and then either a slight 
decrease to a constant plume width, or no decrease and a maintained maximum plume 
width (see BHMS, figures 3,4b) .  The final vertical plume width (a,(m)) is a function 
of the Froude number U / ( M N ) .  I n  their figure 8, BHMS plot the dependent variable 
a,(co) N/wL where wi is the r.m.s. vertical velocity at the source, against U / ( M N ) .  

Their results are in general agreement with the theory of this paper for non- 
dimensional plume depth, with (cr,(co) N / W : ) ~  corresponding to ?(a, y = 0) (see 
$3.2, (3.3)), of order unity. However, as already noted there are two main ways in 
which the experiments differ from the theory for stationary turbulence: (i) the 
turbulence velocities decay downstream of the grid, and (ii) the range of densities 
of fluid marked by the tracer depends on the position of the source (relative to the 
grid) and the Froude number. 

I n  neutral flows the direct effects of velocity decay on ciiffusion are balanced by in- 
creases in the length- and timescales of the turbulence (Batchelor & Townsend 1956). 
So, a t  least until the final stage of decay, the plume width increases ( ( T ~  a t i)  just 
as in the stationary case. However, in a stably stratified fluid this increase in 
Lagrangian length- and timescales for the vertical velocity is inhibited by buoyancy 
forces. That is to say the vertical migration of fluid elements is severely restricted 
by the density stratification and so the extent of diffusion cannot grow as the 
turbulence decays, as i t  does in the neutral case. 

For the case U / ( M N )  = 1.06 the BHMS results (figures 3 , 5 b )  show that the plume 
has reached its maximum vertical width by 15 mesh lengths downstream, while the 
vertical velocity fluctuations are not decaying any faster than in the neutral case. 
So, as BHMS conclude, the reduction in plume growth is not due to velocity 
fluctuations decaying more rapidly as the Froude number decreases. 

Lange (1974) gives explicit measurements of density variances p'2 behind a grid 
in a linear density gradient. His result shows that 7 reaches a maximum at time 
Nt - 1 behind the grid and then decays to  zero, but more slowly than the velocity 
fluctuations (as would be expected). He argues that, if molecular diffusion can be 
neglected, then p'2 is a measure of the variance of fluid particle displacements from 
their original level. Details comparisons between his results and the theory of this 
paper are given in Pearson (1981). Atmospheric measurements of p'2 in stable 
conditions are presented and discussed by Hunt et al. (1982) and Hunt (1982). 

I n  the BHMS experiments, the source was a t  x / M  = 4.7 downstream of the grid. 
Lange's results suggest that i t  may be sampling the full range of densities possible 
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Nt 

FIQURE 12. Theoretical predictions i6 = w z / ( w 2 + a 2 )  - case [a] ( y  = 0 ) .  No decay, 
from (3.6), with a = 2. Decay, from (5.3), with a = 2, Nt, = 1.5. 

(i.e. outside the region of growth of density perturbations) for U / ( M N )  5 4.7. I n  some 
senses the final plume width is a measure of the range of densities sampled at the 
source. 

A crude attempt to model the kinematical effects of decaying turbulence is made 
as follows. ( a )  Assume that decay of turbulence can be decoupled from other processes 
so that  on a ‘ local ’ timescale we can use vertical velocity correlations calculated for 
the stationary case. ( b )  Assume that these ‘local’ correlations are stationary in time. 
Explicitly we assume that the vertical velocity following a fluid element is the product 
of a deterministic decaying amplitude and a stochastic signal. The decay function 
is given by the experimental form and the random signal has known autocorrelation 
function. Vertical diffusion is then calculated from the exact Taylor (1921) relation 

fTE(t) = f s W(t*) W(t’)dt*dt’. 
0 0  

(5.3) 

This has been evaluated numerically, by standard routines on an IBM 3701165, for 
the velocity autocorrelation of (3.6) corresponding to pressure-gradient spectrum 
(2.25a). Typical results show little qualitative change from the equivalent stationary 
turbulence results. A comparison is given in figure 12. After reaching a maximum 
a t  Nt x 3, the plume depths decline somewhat. This decline is mainly due to the 
explicit decoupling in the model of turbulence decay from the other dynamics of the 
problem. The data is ambiguous as to whether such a decline is real. As the further 
behaviour of the plume after reaching a maximum is probably not well modelled, we 
choose the maximum computed value of gZ, gzmax, for comparison with data. 

The non-dimensional frequency scale a = (NT)-’ o f  the pressure-gradient spectrum 
is assumed to be proportional to  the Froude number 

U 
M N  

cL=c- (5.4) 

because the decay of the grid turbulence shows that the turbulent timescale given 
by the grid timescale c-l M T = -  u .  
Figure 13 shows a comparison of three types of normalized plume depths as a function 
of the Froude number: ( a )  the experimental data of BHMS, ( b )  calculated value of 
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FIGURE 13. Asymptotic plume depths. 0 ,  BHMS data. Computations with spectrum [a] and two 
different values of a :  -, no decay - see (3.8); ---, with decay (see text). (i)  a = U / N M ,  (ii) 
a = + U / N M .  

a',,,, N/wL from (5.3) (see Pearson 1980 for details); and ( c )  equivalent results for 
the final 'plume' depth in stationary turbulence from (3.8). The spectrum 

(5 .5)  

was chosen for comparison as (3.10) shows the same trend with 01 or Froude number 
as the BHMS data. ( b )  and ( c )  curves are shown for two plausible values of 
c = aMN/U.  Two points are clear. (i) The effects of modelling any turbulent velocity 
decay are small at low Froude number. This is because the final plume depth is 
reached in a time short compared with that of turbulence decay for large N .  (ii) The 
experimental results (certainly a t  low Froude number) are consistently greater than 
those ofthe simple theory. With the normalization used (a,( 00)  N/wL) the experimental 
values exceed the theoretical maximum (from (3.8)) of 4 2 ,  for U / ( M N )  5 1 .  This 
suggests that w; is not the most appropriate velocity for normalization. Lange's 
results show that the density-fluctuation field is set up by a time Nt  z 1 ,  and then 
only weakly decays until about Nt  z 6 a t  lower Froude numbers (large N ) .  Therefore, 
the density field is generated at an earlier time when turbulent velocity intensities 
are larger, so that a wider range of densities than suggested by w; is sampled at the 
source. (This means that D(q) would be a lower proportion of than is indicated 
by (3.5).) 

5.3. Lagrangian autocorrelation measurements 
Frenzen (1963) directly measured Lagrangian velocities in stratified grid turbulence 
by following neutrally buoyant particles photographically. He computed vertical 
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velocity autocorrelations and found them qualitatively to be of the form computed 
from the theory of $3  and shown in figure 5.  Unfortunately, he applied the Batchelor 
(1952) transformation to his data in an attempt to correct for turbulence decay. Lange 
(1974) pointed out in discussing Frenzen’s results that  the transformation cannot be 
valid in this case, where the autocorrelation function has a negative loop and where 
the ‘local’ integral timescale TL(t) defined by 

1 d F  - 
-~ = W ( t )  TL(t) 
2 dt 

is approximately zero. Frenzen’s results cannot therefore be quantitatively correct. 
However, they, like the plume measurements of BHMS, are in agreement with the 
general predictions of our theory. 

6. Conclusions 
In  this paper we have developed a Lagrangian statistical model, albeit rather 

speculative, for vertical diffusion in stably stratified turbulent flows. The dimensionless 
form F N 2 / 2  relating vertical displacement and vertical velocity statistics with the 
ambient stratification is identified. It is found that experimental results on diffusion 
from point sources support the use of this ratio. The model shows how buoyancy forces 
can restrict the vertical motions of finite fluid elements or control volumes ((i) in $ 1) .  
A rough equipartition then exists between turbulent kinetic energy and the potential 
energy of the randomly varying density field. 

Growth of the plume from a point source is sharply reduced after a time of order 
N-l .  This is a feature not reproduced if a gradient transport model with associated 
eddy diffusivity is used ((ii) in $1). A vertical flux of density through the fluid and 
a continued vertical growth of plume occur through the exchange of density between 
fluid elements by small-scale processes. 

Stable stratification has the effect of introducing a negative loop into the Lagrangian 
autocorrelation function, R,(t), of the vertical velocity. This negative loop allows 
the integral timescale TL to assume a very small or zero value, consistent with the 
restriction of vertical diffusion. 

The model focuses attention on the dynamic consequences of density fluctuations 
and their connection with vertical displacements (Lange 1974 ; Frenzen 1964). This 
provides aframeworkforunderstanding, a t  least qualitatively, the complex interaction 
of density and velocity fields behind a grid in a stable medium. The experiments of 
BHMS provide some general support for the model but introduce further difficulties 
because of their inherent non-stationarity. 

It is hoped that both the specific, and more general, results of this theory 
will be tested experimentally and in computer simulations by Lagrangian 
measurements or computations of 2, p’, and ap/az.  

H. J. P. and J. S. P.  wish to thank the Natural Environment Research Council 
for providing financial support while this work was being done. We are most grateful 
to Professor H. K. Moffatt and the referees for their detailed criticisms of the various 
versions of this paper and to Mrs Naomi Coyle for her patience in endlessly retyping 
it! 
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Appendix. Previous random-force models 

our notation) 
Lin & Reid (1963) consider the motion of fluid particles satisfying the equation (in 

d!?!!!! = - f W ( t )  + H ( t ) ,  (A 1 )  dt 

where f represents viscous damping and H a stationary random prcssure-gradient 
force. This is analogous to the Langevin equation for the Brownian motion of 
suspended particles (Uhlenbeck & Ornstein 1930). Their theory requires that H ( t )  is 
only correlated over a timescale short compared with that of observations - i.e. H 
has a ‘white-noise’ or flat frequency spectrum. They recover Taylor’s (1921) results 
for dispersion a t  small and large times. Krasnoff & Peskin (1971) (see also Krasnoff 
1970) developed Lin’s model further. They assumed that the random force had a finite 
timescale rH (note: not of the same magnitude as T in this paper). By restricting 
attention to isotropic turbulence they derived an energy equation from (A 1). 
Stationarity in time gives an exact balance between viscous dissipation and the 
average rate of energy input to a fluid particle by the pressure gradient 

W ( t ) H ( t )  = fF. (A 2) 

Further use of the stationarity condition suggests the choice 

for the autocorrelation coefficient of the random force. Here 

a* = frH, (A 4) 
and as f-’ is a characteristic timescale of the particle velocity, a* is expected to be 
a very small number in large-Reynolds-number turbulence. The frequency-power 
spectrum corresponding to  (A 3)  for the random pressure gradient is, to within a 
multiplicative constant, 

ETH2 

s2 + (1 - a*)”/7& 
Q*(s) a 

Introducing A,  the Taylor microscale of the turbulence (so that the dissipation rate 
e = 15v2/h2) and the turbulence Reynolds numbers R,, Re where 

their results can be summarized as follows 

(7H is of the order of the Kolmogorov microtimescale) 

01* = CB,l(l- Rhl).  



Vertical dif lusion in strati$ed turbulent Pow 247 

Thus when Re$ $ 1, this form of @(s) when normalized on and N becomes 

@ ( w ,  a) K [w2 + (aRet)2]-1 (A 7)  

where a = NT - NLiw) / (3 )4 .  
Chadam (1962) attempted to extend Lin’s theory to stratified flows, but failed to 

account satisfactorily for the varying densities and initial velocities of the marked 
diffusing fluid particles. He did, however, recognize the role of stratification in 
limiting vertical particle diffusion. 

Csanady (1964) modelled the motion of fluid elements that could not change their 
density in time by the following equations (our notation) : 

with D a density diffusion constant. So he had no explicit damping 
momentum equation. He introduces the velocity corresponding to 
acceleration in a neutral flow 

and solves (A 8), (A 9) in terms of correlation of the new random variable W,. He 
takes the neutral form W1(t) W(t+7) = T e - w  

Thence the velocity spectrum, and the random ‘force ’ spectrum are respectively 

Now, as his formulation (A 8) has no explicit viscous damping, the timescale @-l)  

for the spectrum (A 12) is a decay timescale of the velocity fluctuations, of order 
L$w)/(G)$. (For r.m.s. vertical velocity (3); and lengthscale Lkw),e is such that 

The timescale p-l is very much larger than the Krasnoff & Peskin (1971) timescale 
7 H ,  and the two corresponding random-force spectra (A5) and (2.12) have very 
different forms. This reflects a different ‘level’ of modelling. Although not made clear 
in his paper, we feel that Csanady is really dealing with larger ‘fluid elements’ than 
Krasnoff & Peskin, with the viscous processes absorbed into the random force. This 
is necessary in order to model the effects of buoyancy forces on finite parcels of fluid 
of approximately the same density throughout. Both ‘levels’ of model are discussed 
in the paper. 

For simplicity, and to ensure that w2 = 2, Csanady made the specific assumption 
that D = 0. Because his spectrum (A 12) is such that @ ( O )  = 0, he finds an asymp- 
totically constant plume depth. He does not discuss the vertical density flux through 
the system. 

E - (wz)t/L$9). 
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